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Cooperative Game Theory

• n players with value
function ν : 2[n] → R

• Comb Opt Games: ν
optimizes a
combinatorial
structure

• Solution concepts
assign payoffs to
players

• Core solutions
disincentize
deviation from grand
coaliton [n].
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Cooperative Game Theory

• Core can be empty
• Leastcore: max min

excess: x(S)− ν(S).

• Leastcore can be
non-unique

• 2nd min excess can
be improved

• Nucleolus: max min
excess, 2nd min
excess, . . . ,
lexicographically
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Refining the Leastcore

• For allocation x ∈ Rn, let

S1, . . . ,S2n−2

be all proper coalitions in order of non-decreasing excess
ex(x ,S) = x(S)− ν(S):

ex(x ,S1) ≤ ex(x ,S2) ≤ . . . ≤ ex(x ,S2n−2)

• We define
Θ(x) = (ex(x ,S1), . . . , ex(x ,S2n−2)).

• Leastcore: allocations x , maximizing first coordinate of Θ(x)
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The Nucleolus

Definition: (Schmeidler 1969) The nucleolus of
cooperative game (n, ν) is defined as

η(n, ν) := arg lex maxx∈Rn Θ(x)

• The nucleolus is unique and in a sense “the
most stable” allocation

• (Aumann and Maschler 1985) Nucleolus explains
certain wealth division applications in the
Babylonian talmud.
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Computing The Nucleolus – (Non-Exhaustive) History

• (Solymosi and Raghavan 1994) Efficient algorithm for finding nucleolus in
(weighted) bipartite matching games

• (Kuipers 1996) Efficient algorithm for finding nucleolus in convex games

• Finding the nucleolus of MCST games is NP-hard (Faigle et al. 1998).

• (Kern, Paulusma 2003) Can efficiently compute nucleolus in unweighted
matching games

• Computing the nucleolus in network flow games is NP-hard (Deng,
Fang, Sun 2009)

• Computing the nucleolus in weighted voting games is NP-hard
(Elkind et al. 2007), and pseudo-polynomial time algorithms exist (Elkind
and Pasechnik 2008), (Pashkovich 2018)

• (Baiou and Barahona 2019) Efficient algorithm for shortest path games.

• (Könemann, Pashkovich, T. 2019) Can compute the nucleolus of weighted
matching games in polynomial time.
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Our Contributions

Theorem 1: For a given cooperative game if the min excess problem: for
any input x ∈ Rn, find S ⊆ [n] minimizing x(S)− ν(S), can be modelled
with a dynamic program then the nucleolus of that game can be
computed in time O(n6T ) where T is the time it takes to solve the
dynamic program.

Theorem 2: The min excess problem for b-matching games can be
modelled with a dynamic program which can be solved in polynomial
time if the underlying graph has bounded treewidth.

Corollary: On graphs of bounded treewidth the nucleolus of b-matching
games can be computed in polynomial time.
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Congruency-Constrained Min Excess Problem

Implicit in (Pashkovich 2018) is the following:

Lemma: If for any prime p = O(n2), v ∈ Fn
p , and q ∈ Fp one can solve

min{x(S)− ν(S) : v(S) ≡ p mod p}

in time T then one can compute the nucleolus in time O(poly(n)T ).

• Min excess problem: ε1 = min{x(S)− ν(S) : S ⊆ [n]} ≡ separation oracle
for leastcore points.

• To compute nucleolus need to separate 2nd min excess,. . . , and so on.

min{x(S)− ν(S) : x(S)− ν(S) 6= ε1,S ⊆ [n]}

• Insight: x(S)− ν(S) 6= ε1 can be replaced with poly(n) congruency tests
of the form

min{x(S)− ν(S) : v(S) ≡ q mod p,S ⊆ [n]}
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b-Matching Games on Graphs of Bounded Treewidth

• b-matching games: each player
i can form bi partnerships.

• min x(S)− ν(S) where ν :=
max w -weight b-Matching on G [S].

• tree decomposition: Cover
edges with bags of vertices.

• bag intersections form a tree
structure.

• Size of largest bag - 1 is
treewidth
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b-Matching Games on Graphs of Bounded Treewidth

• C [ζ,F ] := optimal solution on
bags rooted at ζ using edges F
in bag ζ.

• C [α, {12}]=̃

min x(12)− w(12) + C [β,F β] + C [δ,F δ]
s.t.F β ⊆ {15}

F δ ⊆ {23, 34, 24}
|{e ∈ F β : 1 ∈ e}| ≤ 0
|{e ∈ F δ : 2 ∈ e}| ≤ 1
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C [α, {12}]

C [β, ∅]

C [δ, {23}]

C [β, ∅]

C [δ, {34}]

...

pay x(12)− w(12)

7



Hypergraph Model of Dynamic Programming

• Dynamic program solutions:
hyperpaths from root of
Directed Acylic Hypergraph to
leaves.

• (Campbell, Martin, Rardin 1990)
Convex Hull of Hyperpaths has
compact extended formulation.

• How can we identify all
hyperpaths P such that∑

a∈P
v(a) ≡ q mod p

for some v ∈ Fn
p, q ∈ Fp, prime

p?
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Congruency Constrained Dynamic Programming

• Let v ∈ Fn
p.

• Construct a new congruency
hypergraph.

• For each q ∈ Fp and for each
node u in hypergraph do:

• Create node (u, q) to track
hyperpaths P rooted at u of
congruency v(P) ≡ q mod p.

• Heads of arc ai should sum to
q − v(a) mod p.

1

2 3

a

1,q

∀q ∈ Fp create

. . .

2, p

3, q − v(a)− p

2, 1

3, q − v(a)− 1

a1

ap
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Conclusion

Results

• When we can solve the min excess problem efficiently with a
dynamic program we can also compute the nucleolus efficiently

• The min excess problem of b-matching games can be modelled
efficiently with a dynamic program on graphs of bounded treewidth

• The nucleolus of b-matching games can be computed efficiently on
graphs of bounded treewidth

Open Problems

• Can we apply this framework to compute the nucleolus of other
interesting games?

• Branched Polyhedral Systems (Kaibel and Loos 2010) are a common
generalization of dynamic programming and disjunctive programming.
Can our techniques extend to that setting?

• What is the complexity of computing the nucleolus of b-matching games
in general?

10
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