A General Framework For Computing the
Nucleolus Via Dynamic Programming

Justin Toth

Joint work with Jochen Kénemann

W UNIVERSITY OF FACULTY OF MATHEMATICS
N,

2 WATERLOO | Zicimae "

Cooperative Game Theory

e n players with value e \
function v : 2l - R v(4) =

4

v(1,2,3) =

'
v(1,2,3,4) =2

Cooperative Game Theory

e n players with value
function v : 2l - R

e Comb Opt Games: v
optimizes a
combinatorial
structure

'/
v(1,2) =1 v(1,2,3,4) =2

v(4)=0 v(1,2,3)=1

Cooperative Game Theory

e n players with value
function v : 2l 5 R x1 =0.75 xs = 0.25

e Comb Opt Games: v
optimizes a
combinatorial

structure v(3,4)=1<05

e Solution concepts

assign payoffs to
xp = 0.75(2 3, x3 =025

players
v(1,2) =1 v(1,2,3,4)=2

v(4)=0 v(1,2,3)=1

Cooperative Game Theory

e n players with value

function v : 2l — R x; = 0.75 x4 = 0.25
e Comb Opt Games: v L <

optimizes a

combinatorial

structure
e Solution concepts

assign payoffs to

= =0.75

players x2 =0.25(2 3

e Core solutions .
. . v(1,2)=1 v(1,2,3,4) =2
disincentize
deviation from grand v(4)=0 v(1,2,3) =1

coaliton [n]. 1

Cooperative Game Theory

e Core can be empty x1=1/3
. . 1
e Leastcore: max min
excess: x(S) — v(S).
x;=1/3 (2 3 x3=1/3
v(1,2)=1

v(1,2,3) =1

Cooperative Game Theory

a € [0,1]

e Core can be empty x;=1—a« X =«
e Leastcore: max min L 4

excess: x(S) — v(S).
e |leastcore can be

non-unique

X2 = ¢ 2 3 X3 = 1 -
I/(l,2):1 V(1725374):2

v(4)=0 v(1,2,3)=1

Cooperative Game Theory

e Core can be empty x1 = 0.75 x4 = 0.25

. : 1
e Leastcore: max min
excess: x(S) — v(S). /

e Leastcore can be

non-unique

e 2nd min excess can

be improved

xo = 0.25(2 0.75

v(1,2)=1 v(1,2,3,4) =2

v(4)=0 v(1,2,3)=1

Cooperative Game Theory

e Core can be empty x; = 0.5

e Leastcore: max min
excess: x(S) — v(S).
e Leastcore can be

non-unique

e 2nd min excess can

be improved

X2 :05 2

e Nucleolus: max min

excess, 2nd min v(1,2) =1 v(1,2,3,4) =2
excess, ...,

lexicographically v(4) =0 v(1,2,3)=1

Refining the Leastcore

e For allocation x € R”, let
51, ey 52n_2

be all proper coalitions in order of non-decreasing excess

ex(x,S) = x(S) — v(S):

Refining the Leastcore

e For allocation x € R”, let
51, ey 52n_2

be all proper coalitions in order of non-decreasing excess

ex(x,S) = x(S) — v(S):

ex(x, 51) < ex(x,5) < ... <ex(x,Swm_2)

Refining the Leastcore

e For allocation x € R”, let
51, ey S2n_2

be all proper coalitions in order of non-decreasing excess

ex(x,S) = x(S) — v(S):

ex(x, 51) < ex(x,5) < ... <ex(x,Swm_2)

e We define
O(x) = (ex(x, S1), .. ., ex(x, Son_2)).

Refining the Leastcore

e For allocation x € R”, let
51, ey S2n_2

be all proper coalitions in order of non-decreasing excess

ex(x,S) = x(S) — v(S):

ex(x, 51) < ex(x,5) < ... <ex(x,Swm_2)

e We define
O(x) = (ex(x, S1), .. ., ex(x, Son_2)).

e Leastcore: allocations x, maximizing first coordinate of ©(x)

The Nucleolus

Definition: (Schmeidler 1969) The nucleolus of
cooperative game (n,v) is defined as

n(n,v) 1= arg lex max, cr.O(x)

The Nucleolus

Definition: (Schmeidler 1969) The nucleolus of
cooperative game (n,v) is defined as

n(n,v) 1= arg lex max, cr.O(x)

e The nucleolus is unique and in a sense “the
most stable” allocation

The Nucleolus

Definition: (Schmeidler 1969) The nucleolus of
cooperative game (n,v) is defined as

n(n,v) 1= arg lex max, cr.O(x)

e The nucleolus is unique and in a sense “the
most stable” allocation

e (Aumann and Maschler 1985) Nucleolus explains

certain wealth division applications in the

Babylonian talmud.

Computing The Nucleolus — (Non-Exhaustive) History

e (Solymosi and Raghavan 1994) Efficient algorithm for finding nucleolus in
(weighted) bipartite matching games

Computing The Nucleolus — (Non-Exhaustive) History

e (Solymosi and Raghavan 1994) Efficient algorithm for finding nucleolus in
(weighted) bipartite matching games

o (Kuipers 1996) Efficient algorithm for finding nucleolus in convex games

Computing The Nucleolus — (Non-Exhaustive) History

e (Solymosi and Raghavan 1994) Efficient algorithm for finding nucleolus in
(weighted) bipartite matching games

o (Kuipers 1996) Efficient algorithm for finding nucleolus in convex games

e Finding the nucleolus of MCST games is NP-hard (Faigle et al. 1998).

Computing The Nucleolus — (Non-Exhaustive) History

e (Solymosi and Raghavan 1994) Efficient algorithm for finding nucleolus in
(weighted) bipartite matching games

o (Kuipers 1996) Efficient algorithm for finding nucleolus in convex games
e Finding the nucleolus of MCST games is NP-hard (Faigle et al. 1998).

o (Kern, Paulusma 2003) Can efficiently compute nucleolus in unweighted
matching games

Computing The Nucleolus — (Non-Exhaustive) History

e (Solymosi and Raghavan 1994) Efficient algorithm for finding nucleolus in
(weighted) bipartite matching games

(Kuipers 1996) Efficient algorithm for finding nucleolus in convex games
Finding the nucleolus of MCST games is NP-hard (Faigle et al. 1998).

(Kern, Paulusma 2003) Can efficiently compute nucleolus in unweighted

matching games

Computing the nucleolus in network flow games is NP-hard (Deng,
Fang, Sun 2009)

Computing The Nucleolus — (Non-Exhaustive) History

(Solymosi and Raghavan 1994) Efficient algorithm for finding nucleolus in
(weighted) bipartite matching games

(Kuipers 1996) Efficient algorithm for finding nucleolus in convex games
Finding the nucleolus of MCST games is NP-hard (Faigle et al. 1998).
(Kern, Paulusma 2003) Can efficiently compute nucleolus in unweighted
matching games

Computing the nucleolus in network flow games is NP-hard (Deng,
Fang, Sun 2009)

Computing the nucleolus in weighted voting games is NP-hard

(Elkind et al. 2007), and pseudo-polynomial time algorithms exist (Elkind
and Pasechnik 2008), (Pashkovich 2018)

Computing The Nucleolus — (Non-Exhaustive) History

(Solymosi and Raghavan 1994) Efficient algorithm for finding nucleolus in
(weighted) bipartite matching games

(Kuipers 1996) Efficient algorithm for finding nucleolus in convex games
Finding the nucleolus of MCST games is NP-hard (Faigle et al. 1998).

(Kern, Paulusma 2003) Can efficiently compute nucleolus in unweighted
matching games

Computing the nucleolus in network flow games is NP-hard (Deng,
Fang, Sun 2009)

Computing the nucleolus in weighted voting games is NP-hard
(Elkind et al. 2007), and pseudo-polynomial time algorithms exist (Elkind
and Pasechnik 2008), (Pashkovich 2018)

(Baiou and Barahona 2019) Efficient algorithm for shortest path games.

Computing The Nucleolus — (Non-Exhaustive) History

(Solymosi and Raghavan 1994) Efficient algorithm for finding nucleolus in
(weighted) bipartite matching games

(Kuipers 1996) Efficient algorithm for finding nucleolus in convex games
Finding the nucleolus of MCST games is NP-hard (Faigle et al. 1998).

(Kern, Paulusma 2003) Can efficiently compute nucleolus in unweighted
matching games
Computing the nucleolus in network flow games is NP-hard (Deng,
Fang, Sun 2009)

Computing the nucleolus in weighted voting games is NP-hard
(Elkind et al. 2007), and pseudo-polynomial time algorithms exist (Elkind
and Pasechnik 2008), (Pashkovich 2018)

(Baiou and Barahona 2019) Efficient algorithm for shortest path games.

(Kénemann, Pashkovich, T. 2019) Can compute the nucleolus of weighted

matching games in polynomial time.

Our Contributions

Theorem 1: For a given cooperative game if the min excess problem: for
any input x € R”, find S C [n] minimizing x(S) — v(S), can be modelled
with a dynamic program then the nucleolus of that game can be
computed in time O(n®T) where T is the time it takes to solve the

dynamic program.

Theorem 2: The min excess problem for b-matching games can be
modelled with a dynamic program which can be solved in polynomial
time if the underlying graph has bounded treewidth.

Corollary: On graphs of bounded treewidth the nucleolus of b-matching
games can be computed in polynomial time.

Congruency-Constrained Min Excess Problem

Implicit in (Pashkovich 2018) is the following:

Lemma: If for any prime p = O(n?), v € F2, and g € F,, one can solve
min{x(S) — v(S) : v(S) =p mod p}

in time T then one can compute the nucleolus in time O(poly(n)T).

Congruency-Constrained Min Excess Problem

Implicit in (Pashkovich 2018) is the following:

Lemma: If for any prime p = O(n?), v € F2, and g € F,, one can solve
min{x(S) — v(S) : v(S) =p mod p}
in time T then one can compute the nucleolus in time O(poly(n)T).

e Min excess problem: ¢; = min{x(S) —v(S) : S C [n]} = separation oracle
for leastcore points.

Congruency-Constrained Min Excess Problem

Implicit in (Pashkovich 2018) is the following:

Lemma: If for any prime p = O(n?), v € F2, and q € F,, one can solve
min{x(S) — v(S) : v(S) =p mod p}

in time T then one can compute the nucleolus in time O(poly(n)T).

e Min excess problem: ¢; = min{x(S) —v(S) : S C [n]} = separation oracle
for leastcore points.

e To compute nucleolus need to separate 2nd min excess,. .., and so on.

min{x(S) — v(S) : x(S) — v(S) # €1, S C [n]}

Congruency-Constrained Min Excess Problem

Implicit in (Pashkovich 2018) is the following:

Lemma: If for any prime p = O(n?), v € F2, and q € F,, one can solve
min{x(S) — v(S) : v(S) =p mod p}

in time T then one can compute the nucleolus in time O(poly(n)T).

e Min excess problem: ¢; = min{x(S) —v(S) : S C [n]} = separation oracle

for leastcore points.

e To compute nucleolus need to separate 2nd min excess,. .., and so on.
min{x(S) — v(S) : x(S) — v(S) # €1, S C [n]}

e Insight: x(S) — v(S) # €1 can be replaced with poly(n) congruency tests
of the form

min{x(S) —v(S): v(S§)=q mod p,S C [n]}

b-Matching Games on Graphs of Bounded Treewidth

2 2

e b-matching games: each player
i can form b; partnerships.

b-Matching Games on Graphs of Bounded Treewidth

2@

e b-matching games: each player
i can form b; partnerships.

b-Matching Games on Graphs of Bounded Treewidth

e b-matching games: each player 2

3|
VAN
1 @/ 1

i can form b; partnerships.

b-Matching Games on Graphs of Bounded Treewidth
2 o 2 =2/3
&0 223

e b-matching games: each player 2 % =2/3
i can form b; partnerships. 2

e min x(S) — v(S) where v :=
max w-weight b-Matching on G[S]. 1 x1 =2

3l
X5:2

/
4 N .
X7 =
‘@ %5 =0
=0

b-Matching Games on Graphs of Bounded Treewidth

e b-matching games: each player

i can form b; partnerships.
e min x(S) — v(S) where v :=

max w-weight b-Matching on G[S].
e tree decomposition: Cover

edges with bags of vertices.

e bag intersections form a tree
structure.

e Size of largest bag - 1 is
treewidth

b-Matching Games on Graphs of Bounded Treewidth

e CJ[C, F] := optimal solution on
bags rooted at (using edges F
in bag (.

e Cla,{12}]=

min x(12) — w(12) + C[B, F°] + C[J, F’]
s.t.FP C {15}

F° C {23,34,24}

{fec FP:1ce}| <0

{ec F°:2ce}| <1

b-Matching Games on Graphs of Bounded Treewidth

e CJ[C, F] := optimal solution on
bags rooted at (using edges F

in bag (.
o Clo, {12}]=
min x(12) — w(12) + C[B, F°] + C[J, F’] C[a, {12}]
s.t.FP C {15}

Fo C {23,34,24}
{fec FP:1ce}| <0
{ec F°:2ce}| <1

Hypergraph Model of Dynamic Programming

e Dynamic program solutions:
hyperpaths from root of
Directed Acylic Hypergraph to
leaves.

Hypergraph Model of Dynamic Programming

e Dynamic program solutions:
hyperpaths from root of
Directed Acylic Hypergraph to
leaves.

e (Campbell, Martin, Rardin 1990)
Convex Hull of Hyperpaths has
compact extended formulation.

Hypergraph Model of Dynamic Programming

e Dynamic program solutions:
hyperpaths from root of
Directed Acylic Hypergraph to
leaves.

e (Campbell, Martin, Rardin 1990)
Convex Hull of Hyperpaths has
compact extended formulation.

e How can we identify all
hyperpaths P such that

Zv(a) =g modp

acP

for some v € IF,’;, q € Fp, prime
p?

Congruency Constrained Dynamic Programming

o Letvel)

e Construct a new congruency
hypergraph.

Congruency Constrained Dynamic Programming

o Let v €FY. 2 O
e Construct a new congruency -

hypergraph.

e For each g € F,, and for each v Vq € F, create
node v in hypergraph do:

e Create node (u, q) to track a '@

hyperpaths P rooted at u of @ / ap

congruency v(P) = ¢ mod p.
,q — V(a) -1

e Heads of arc a; should sum to @

g —v(a) mod p.

Conclusion

Results

e When we can solve the min excess problem efficiently with a
dynamic program we can also compute the nucleolus efficiently

e The min excess problem of b-matching games can be modelled
efficiently with a dynamic program on graphs of bounded treewidth

e The nucleolus of b-matching games can be computed efficiently on
graphs of bounded treewidth

10

Conclusion

Results

e When we can solve the min excess problem efficiently with a
dynamic program we can also compute the nucleolus efficiently

e The min excess problem of b-matching games can be modelled
efficiently with a dynamic program on graphs of bounded treewidth

e The nucleolus of b-matching games can be computed efficiently on
graphs of bounded treewidth

Open Problems

e Can we apply this framework to compute the nucleolus of other
interesting games?

e Branched Polyhedral Systems (Kaibel and Loos 2010) are a common
generalization of dynamic programming and disjunctive programming.
Can our techniques extend to that setting?

e What is the complexity of computing the nucleolus of b-matching games
in general?

10

